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1. INTRODUCTION

Letfbe either an entire function or a real-valued harmonic function in the
Euclidean space Rn (n ? 2). We say that / is of exponential type (l(, where
o ~ ex < ro, if

lim sup r-1 log .AU, r) = IX,
r-t"Y:;

where .A(f; r) is the supremum of 1/1 over the circle or sphere of radius r
centered at the origin ofC (the complex plane) or Rn. Thus, constant functions
are of exponential type 0 (by convention, even if the constant is 0). The spaces
of all entire functions and all harmonic functions in Rn of exponential type
at most IX are denoted by C(IX) and df'nClX), respectively. The space of all
polynomials of degree at most q (q ? 0) in one complex variable is denoted
by gPa, and the space of all real-valued polynomials of degree at most q in Rn
is denoted by gPn,a • Throughout this note p denotes a positive number, and
[p] is the greatest integer not exceeding p.

The following result is due to Valiron [9] (or see, e.g., Boas [4, p. 183]).

THEOREM A. 1//E C(O) and

fez) = 0(1 z I")

as I z I ---+ ro through integer values, then /E &[vJ .

This theorem fails if/is supposed to be harmonic in the plane, rather than
entire. For example, the harmonic function in C,

OJ

Z~ 1m I (j!)-2 zj
j=O
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is of exponential type 0 (see, e.g., Titchmarsh [8, p. 255]) and vanishes on the
real axis. However, we shall show that there are harmonic analogues of
Theorem A in which, for example, the function is required to have polynomial
growth on two copies of the integers embedded in C. More generally, we shall
work in Rn. Our proofs make use of certain results in [3]. I am grateful to the
referee for pointing out that some of the results we require can also be found
in the papers of Rao [7] and Zeilberger [10].

Before stating our results, we introduce some further notations. An
arbitrary point of Rn is denoted by X = (Xl"'" X n), and we put

Throughout this paper m denotes an integer such that 1 ~ m ~ n - I, and
we put

and

1m = {X E Em: Xl"'" Xm E Z},

where Z is the set of all integers. If Gl and G2 are subsets of Rn, we put

The Alexandroff point (at infinity) of Rn is denoted by d and the origin of Rn
is denoted by O.

The result from which our harmonic analogues of Theorem A will be
deduced is as follows.

THEOREM 1. If h E Jf'n(O) and

h(X) = 0(1 X IV)

as X --+ .s¥ through 1m , then the restriction ofh to Em is a polynomial ofdegree

at most [p] in Xl"'" X m •

The result fails if h E Jf'n(ex), where ex > O.

Using the case m = n - 1 of this theorem together with certain other
results, we shall prove the following theorems.

THEOREM 2. Let Z be a point ofRn\En-l. IfhE Jf'n(O) and

h(X) = 0(1 X IV)

as X --+.s¥ through the set r-l + {O, Z}, then h E ,qpn,[p]+1' The maximal
degree [p] + 1 ofh is best possible.
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THEOREM 3. Let Zo be a point ofEn-I. Ifh E £'n(O) and there exist positive
numbers p and pi such that

h(X) = 0(1 X IP)

as X ----lo- d through the set I n - l and

~ (X) = 0(1 X [P')oXn

as X ----lo- d through the set 1"-1 + {Zo}, then h E f!ln,p., where p* =
max{[p], [pi] + I}. The value ofp* is best possible.

2. A LEMMA ON INTERPOLATION

To prepare the way for the proof of Theorem in the cases where
2 :s;: m :s;: n - I, we prove the following.

LEMMA 1. Let g be a real-valued function on Em (n ;;?: 3, m ;;?: 2) such that
the restriction ofg to any line of the form

{X E Em; Xi = k i , i =1= j} (j = 1,...,m;kiEZ)

is a polynomial (in one variable) of degree at most q, where q is a fixed non­
negative integer. Then there exists a polynomial P in Rn such that P = g
on 1m.

Let Xj (j = 1,... , (q + l)m) be the elements of the set

{XElm : 0 :s;: Xi :s;: q (i = 1, ... , m)}

in some order, and let xji be the ith coordinate of X j • Define P in Rn by the
equation

Then P is a polynomial in Rn (depending only on Xl"'" X m ) and P(Xj ) =
g(Xj ) for each j. We show, by induction on j.t, that if 1 :s;: j.t :s;: m, then
P = g on the set

JIl = {X E 1m ; 0 :s;: Xi :s;: q (11' < i :s;: m)}.
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Suppose first that po = I and that YEP. The restriction of P to the line

is a polynomial of degree at most q in Xl . Further, L l contains q + 1 of the
points X j . Since P(Xj) = g(Xj), the restriction of P - g to L l is a polynomial
of degree at most q in Xl with at least q + 1 zeroes. Hence P = g on Ll ,

and therefore, since Y is arbitrary, on P.
Now suppose that 1 ~ po < n, that P = g on J" and that Y E J"+l. The

restriction of P to the line

is a polynomial of degree at most q in X"+l . Further, L 2 contains q + 1
points of J". Since P = g on J", the restriction of P - g to L 2 is a polynomial
of degree at most q in X,,+! with at least q + 1 zeroes. Hence P = g on L l ,

and therefore, since Y is arbitrary, on J"+1. The induction is complete.

3. PROOF OF THEOREM I

We start with the case m = 1. To prove this case, we recall an earlier result.
Writing Dj = fJifoxl

j (j = 1,2,...), we have the following lemma [3,
Theorem 6].

LEMMA A. If h is harmonic in Rn and

A(h; r) = O(elJr)

where f3 > 0, then

(r ---+ 00),

(j ---+ 00).

Suppose that h satisfies the hypotheses of Theorem 1 with m = 1. Define
a function f: C ---+ C by the equation

(Xl

fez) = I Djh(O)(j!)-l Zi.
j~O

Using the hypothesis that h E .n"n(O) and Lemma A, we easily obtainfE C(O).
Also, since h is given in the whole of Rn by its multiple Taylor series about 0
(see e.g. Brelot [5, Appendix]), we have in particular

f(x) = hex, 0,... , 0) (X E R), (1)
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as I z I -- 00 through integer values. Hence, by Theorem A, fE [!1!(pJ, and
therefore, by (l), the restriction of h to £1 is a polynomial of degree at most
[p] in Xl .

It remains to prove the theorem in the cases where 2 ~ m ~ n - I. In
preparation for the proof of these cases, we quote some further lemmas.

LEMMA B. If hE Jf'(O) and YERn, then the function

x ""+ heX + Y)

belongs to Jf'(O).

This is a simple consequence of the maximum principle.

LEMMA C. IfP E [!1!n,q , then there exists a harmonic element H of [!1!n.q such
that H = P on En-I.

This is well-known and follows, for example, from [2, Lemma 7]. Finally,
we recall a weak form of [3, Theorem I] (see also [7] and [10)).

LEMMA D. If h E Jf'm(O) and h = 0 on I'm, then h = 0 on Em.

Suppose now that n ~ 3, 2 ~ m ~ n - I and that h satisfies the hypo­
theses of Theorem I. By Lemma B, if YElm , then the function given by (2)
satisfies the hypotheses of the theorem. A fortiori, this function satisfies the
hypotheses with m = I, so that, by the case already proved, its restriction
to £1 is a polynomial of degree at most [p], i.e., the restriction of h to the line

{X E Em: Xi = Yi (2 ~ i ~ m)}

is a polynomial of degree at most [p]. Generalizing this argument in a trivial
way, we see that h satisfies the hypotheses of Lemma I with q = [p]. Hence
there is a polynomial Pin Rn such that h = P on /7". By Lemma C, there is a
harmonic polynomial H in Rn such that H = P on En-I, and therefore
H = h on 1m. Since H - h E Jf'n(O), Lemma D now gives H = h on Em.
Hence the restriction of h to Em is a polynomial in Xl'"'' X m • It remains to
prove that the degree of this polynomial is at most [p]. Let its degree be s
and let hs be its homogeneous part of degree s. Then there exist a non­
degenerate semi-infinite cone C of vertex 0 in Rn and a positive number ,\
such that

I h(X)1 ~ t Ih.(X)I ~ ,\ I X Is (X E C () Em,'\ I X I > I).
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Since C contains infinitely many points of 1m , we must have s :::;; p, else we
contradict the hypotheses of the theorem.

To show that the theorem fails if hE .n"n(a), where a > 0, it is enough to
observe that the function

x - cosh aXl sin aXn

belongs to .n"n(a) and vanishes on En-l and therefore on 1m for each m =

I, ... , n - 1.

4. PROOFS OF THEOREMS 2 AND 3

To prove Theorem 2 we shall need the following case of a result of Brelot
and Choquet [6, Theorem 6J (or see [1, Theorem 4]).

LEMMA E. If P E & n.q and Z E Rn\En-l, then there exists a harmonic
element H of&n,q such that H = P on En-l + {O, Z}.

We shall also need the following weak form of [3; Theorem 2] (see also [7]
and [1O]).

LEMMA F. Let Zl = (0, ... , 0, I). Ifh E .n"iO) and h = °on En-l + {O, Zl},

then h == 0.

Now suppose that h satisfies the hypotheses of Theorem 2. By Theorem 1,
the restriction of h to En-l is a polynomial PI' say, of degree at most [p] in
Xl'"'' Xn-l' By Lemma B, we can use a translation argument to deduce
similarly that the restriction of h to En-l + {Zl} is a polynomial P2 , say,
of degree at most [p] in Xl"'" Xn- l . Now define an element P of & n,[p]+l
by the equation

where a is the nth coordinate of Z. Then the restriction of P to En-l is PI and
the restriction of P to En- l + {Z} is P2 • Hence P = h on En-l + {O, Z}.
By Lemma E, there is a harmonic element H of f!IJn,[p]+l such that H = P = h
on En-l + {O, Z}. Now define a function h* in Rn by the equation

h*(X) = (H - h)(aX).

Then, clearly, h* E .n"n(O) and h* = °on En-l + {O, Zl}' By Lemma F,
h* == 0, and hence h = H.
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To show that the degree [p] + I cannot be improved, observe that the
function

x .- Im(xi + ixn)[P]+1 (XE Rn)

is a harmonic polynomial of degree exactly [p] + I and satisfies the
hypotheses of the theorem.

Now suppose that h satisfies the hypotheses of Theorem 3. By Theorem I,
the restriction of h to En-l is a polynomial P3' say, of degree at most [p] in
Xl"'" X n- l . Since 8hj8xn E .n"nCO) [3, Lemma 3], Lemma B allows us to use
a translation argument to obtain that the restriction of 8hj8xn to En-l is a
polynomial P4, say, of degree at most [pI] in Xl"'" Xn- l . Define a function H
in Rn by the equation

rip]

H(X) = L (-1)1((2j)!t1 x~L11P3(Xl ,... , xn- l)
i~O

tip']
+ L (-1 )i((2j + 1) !)-l X~+1L1iP4(XI ,... , xn- l ),

i~O

where L!i is the jth iterated Laplacian in the variables Xl'"'' X n- l . It is easy
to show by computation that H is a harmonic element of :?Jln,p' and that
H = hand 8Hj8xn = 8hj8xn on En-l (see [2, Lemmas 7 and 8]). A simple
argument involving the reflection principle shows that H - h vanishes
together with all its partial derivatives on En-l and hence that h = H.

To show that the degree p* cannot be improved observe that the function

x .- Re(xi + ixn)[P] + lm(xi + iXn)[P']+1 (XE Rn)

is a harmonic polynomial of degree exactly p* and satisfies the hypotheses of
Theorem 3.
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