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1. INTRODUCTION

Let f be either an entire function or a real-valued harmonic function in the
Euclidean space R® (n = 2). We say that f is of exponential type «, where
0 <o < oo,if

lim sup rilog H(f,r) = a,

where #(f; r) is the supremum of | /| over the circle or sphere of radius r
centered at the origin of C (the complex plane) or R”. Thus, constant functions
are of exponential type 0 (by convention, even if the constant is 0). The spaces
of all entire functions and all harmonic functions in R* of exponential type
at most « are denoted by &(a) and 5#,(x), respectively. The space of all
polynomials of degree at most g (¢ = 0) in one complex variable is denoted
by Z, , and the space of all real-valued polynomials of degree at most g in R”
is denoted by &, , . Throughout this note p denotes a positive number, and
[p] is the greatest integer not exceeding p.
The following result is due to Valiron [9] (or see, e.g., Boas {4, p. 183]).

THEOREM A. If fe &(0) and

f@)=0(z"

as | z | — oo through integer values, then fe P, .

This theorem fails if fis supposed to be harmonic in the plane, rather than
entire. For example, the harmonic function in C,

z~~1m Y (D22
=0
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is of exponential type O (see, e.g., Titchmarsh [8, p. 255]) and vanishes on the
real axis. However, we shall show that there are harmonic analogues of
Theorem A in which, for example, the function is required to have polynomial
growth on two copies of the integers embedded in C. More generally, we shall
work in R”. Qur proofs make use of certain results in [3]. I am grateful to the
referee for pointing out that some of the results we require can also be found
in the papers of Rao [7] and Zeilberger {10].

Before stating our results, we introduce some further notations. An
arbitrary point of R” is denoted by X = (x,,..., x,,), and we put

PX | = (x4 - + xn2)1/2.

Throughout this paper m denotes an integer such that 1 <<m <<n — I, and
we put
Emn ={XeR" Xy = =Xx, =0}

and
I ={X€E™ Xy ., X € L},
where Z is the set of all integers. If G, and G, are subsets of R”, we put

G,+ Gy, ={X+ Y:Xe€G,, YeGyh

The Alexandroff point (at infinity) of R is denoted by o7 and the origin of R”

is denoted by O.
The result from which our harmonic analogues of Theorem A will be

deduced is as follows.

THEOREM 1, If he #,(0) and
h(X) = O( X |")

as X — s through I™, then the restriction of h to E™ is a polynomial of degree

at most [plin xq ..., X .
The result fails if h € #(), where o > 0.

Using the case m = n — 1 of this theorem together with certain other
results, we shall prove the following theorems.

THEOREM 2. Let Z be a point of RMNE™L. If h € 3,(0) and
h(X) = O X |7)

as X — o through the set I"™' - {0, Z}, then he P, 15141 - The maximal
degree [p] + 1 of h is best possible.
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THEOREM 3. Let Z, be a point of E™Y. If h € #,(0) and there exist positive
numbers p and p’ such that

nX) = 0( X7
as X — </ through the set I"' and

oh >
@(X) = O(| X |*)

as X — o through the set I + {Z,}, then he P, ,., where p* =
max{[p], [p’] -+ 1}. The value of p* is best possible.

2. A LeMMA ON INTERPOLATION

To prepare the way for the proof of Theorem 1 in the cases where
2 < m < n— 1, we prove the following.

LemMa 1. Let g be a real-valued function on E™ (n = 3, m = 2) such that
the restriction of g to any line of the form

{XeE™: x; = k;,i1 #+J} (j=1,...mk;eZ)
is a polynomial (in one variable) of degree at most q, where q is a fixed non-

negative integer. Then there exists a polynomial P in R® such that P = g
on I™.

Let X; (j = 1,..., (¢ + 1)™) be the elements of the set
Xel™0<x, <q@=1,.,m}

in some order, and let x;; be the ith coordinate of X . Define P in R” by the
equation

PGy = Y, 1] 11 (F=2) sxo).

Then P is a polynomial in R" (depending only on x,,..., x,,) and P(X;) =
g(X;) for each j. We show, by induction on u, that if 1 < p < m, then
P = g on the set

Jr={Xel™0<x;, <q(p<i<m)
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Suppose first that p = 1 and that ¥ € J*. The restriction of P to the line
Ly ={XeEm™"x;=y,2 <i<m)}

is a polynomial of degree at most ¢ in x, . Further, L, contains ¢ -+ 1 of the
points X; . Since P(X;) = g(X;), the restriction of P — g to L, is a polynomial
of degree at most ¢ in x; with at least ¢ -+ | zeroes. Hence P =g on L, ,
and therefore, since Y is arbitrary, on J%.

Now suppose that 1 << u < n, that P = g on J* and that Y e J#*1. The
restriction of P to the line

Ly ={XeEmx;, =y, (1 <i<mi+pu-+ 1)}

i1s a polynomial of degree at most ¢ in x,,; . Further, L, contains ¢ + 1
points of J“. Since P = g on J*, the restriction of P — g to L, is a polynomial
of degree at most ¢ in x,; with at least ¢ 4 1 zeroes. Hence P = gon L,,
and therefore, since Y is arbitrary, on J#+1. The induction is complete.

3. PRoOF OF THEOREM 1

We start with the case m = 1. To prove this case, we recall an earlier result.
Writing D7 = ¢//ox,” (j =1, 2,...), we have the following lemma [3,
Theorem 6].

LemMA A. If h is harmonic in R™ and
Mhyr) = O@)  (r— ),

where B > 0, then
Dh(0) = O(j"**)  (j— o).
Suppose that A satisfies the hypotheses of Theorem 1 with m = 1. Define
a function f: C — C by the equation
f(@) = Y DROY ;™ 2.

j=0

Using the hypothesis that 4 € #,(0) and Lemma A, we easily obtain f € &(0).
Also, since A is given in the whole of R” by its multiple Taylor series about O
(see e.g. Brelot [5, Appendix]), we have in particular

f(¥) = h(x,0,.,0) (xeR), (0
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so that
fzy=0(z?)

as | z | — oo through integer values. Hence, by Theorem A, fe Z(,;, and
therefore, by (1), the restriction of / to E' is a polynomial of degree at most
[p}in x;.

It remains to prove the theorem in the cases where 2 <m <n — 1. In
preparation for the proof of these cases, we quote some further lemmas.

LEmMMA B. Ifhes#(0) and Y € R, then the function
X~hX+Y) (XeRv

belongs to #(0).

This is a simple consequence of the maximum principle.

Lemma C. IfPe P, ,, then there exists a harmonic element H of 7, , such
that H = P on E™ 1

This is well-known and follows, for example, from [2, Lemma 7). Finally,
we recall a weak form of [3, Theorem 1] (see also [7] and [10]).

LeMMA D. Ifhes#,(0) and h = G on I, then h = 0 on E™.

Suppose now that n > 3, 2 << m << n — 1 and that #/ satisfies the hypo-
theses of Theorem 1. By Lemma B, if Y € I, then the function given by (2)
satisfies the hypotheses of the theorem. A fortiori, this function satisfies the
hypotheses with m = 1, so that, by the case already proved, its restriction
to E'is a polynomial of degree at most [ p], i.e., the restriction of 4 to the line

XeE™x, =y, 2 <i<m)

is a polynomial of degree at most [ p]. Generalizing this argument in a trivial
way, we see that 4 satisfies the hypotheses of Lemma 1 with ¢ = [ p]. Hence
there is a polynomial P in R” such that # = P on [™ By Lemma C, thereis a
harmonic polynomial H in R” such that # = P on E*1, and therefore
H = h on I, Since H — h € 3#,(0), Lemma D now gives H = k& on E™
Hence the restriction of # to £™ is a polynomial in x, ,..., X, . It remains to
prove that the degree of this polynomial is at most [ p]. Let its degree be s
and let A, be its homogeneous part of degree s. Then there exist a non-
degenerate semi-infinite cone C of vertex O in R” and a positive number A
such that

TRl = 3 1hX)] Z AlX T (XeCNE™AX]|>1).

640/26/3-6
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Since C contains infinitely many points of /™, we must have s < p, else we
contradict the hypotheses of the theorem.

To show that the theorem fails if h € £,(«), where o > 0, it is enough to
observe that the function

X ~ cosh ax; sin ax,

belongs to J#,(a) and vanishes on E*! and therefore on I"™ for each m =
I, m— 1.

4. PrROOFS OF THEOREMS 2 AND 3

To prove Theorem 2 we shall need the following case of a result of Brelot
and Choquet [6, Theorem 6] (or see [1, Theorem 4]).

LemMa E. If Pe#,, and Z € R\E"\, then there exists a harmonic
element H of #,, , such that H = P on E"1 4+ {0, Z}.

We shall also need the following weak form of [3; Theorem 2] (see also [7]
and [10]).

LemmAa F. LetZ, =(0,...,0,1). Ifhe 5#,(0)andh = 0on E»' + {0, Z,},
then h = 0.

Now suppose that 4 satisfies the hypotheses of Theorem 2. By Theorem 1,
the restriction of A to E™~! is a polynomial P, , say, of degree at most [ p] in
X1 5.-s X1 - By Lemma B, we can use a translation argument to deduce
similarly that the restriction of h to E*! 4 {Z,} is a polynomial P,, say,
of degree at most [ p] in x, ,..., x,_, . Now define an element P of &, 1,1,
by the equation

P(xy 5.y Xp) = (@ — X5) a7 IP(X1 5oy Xp_1) + X0@ LPy(X1 5ueey Xpn_z)y
where a is the nth coordinate of Z. Then the restriction of P to E*1is P, and
the restriction of P to E,_; + {Z} is P,. Hence P = h on E*! 4 {0, Z}.
By Lemma E, there is a harmonic element H of 2, [,1,; suchthat H =P = h
on E»1 + {0, Z}. Now define a function A2* in R™ by the equation

h*(X) = (H — h)(aX).

Then, clearly, h* € 5#,0) and #* =0 on E™! + {0, Z,}. By Lemma F,
h* = 0, and hence h = H.
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To show that the degree [ p] + 1 cannot be improved, observe that the
function

X ~ Im(x, + ix,)?1+1 (XeR®

is a harmonic polynomial of degree exactly [p]+ 1 and satisfies the
hypotheses of the theorem.

Now suppose that 4 satisfies the hypotheses of Theorem 3. By Theorem 1,
the restriction of k to E»-1is a polynomial Py, say, of degree at most [ p] in
X1 yeers Xpoy . Since Shox, € #,(0) [3, Lemma 3], Lemma B allows us to use
a translation argument to obtain that the restriction of éh/ox, to E"'is a
polynomial P, , say, of degree at most [ p'}in xy ,..., X,_; . Define a function H
in R" by the equation

[$p] . o
HX) = Y (—D(@)H) 7 x4 Py(xy oeer Xny)

=0

[3p’] ) . )
+ Y (D@ + DY AT P xy s Xn),s
i=0

where 47 is the jth iterated Laplacian in the variables x, ,..., x,_; . It is easy
to show by computation that H is a harmonic element of %, ,.» and that
H = h and 0H|ox, = 0h{ox, on E™! (see [2, Lemmas 7 and 8]). A simple
argument involving the reflection principle shows that H — h vanishes
together with all its partial derivatives on E»-! and hence that # = H.

To show that the degree p* cannot be improved observe that the function

X ~ Re(xy 4 ix )7 + Im(x; + ix,)?' 1+ (XeR?)

is a harmonic polynomial of degree exactly p* and satisfies the hypotheses of
Theorem 3.
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